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Thermodynamic Phase Changes and
Catastrophe Theory

D. A. LAVIS and G. M. BELL, FIMA
Department of Mathematics, Chelsea College, London

1. Introduction

IN 1873 van der Waals published his thesis! “On the continuity of the gaseous and the liquid state’ in which he proposed

his now famous equation of state as a basis for an understanding of the vapour-liquid phase transition. It was known
that part of the loop of the continuous isotherm yielded by van der Waals’ equation, for temperatures lower than the
critical temperature, would correspond to metastable or unstable states of the system. A phase transition should be
represented by drawing a tie-line parallel to the volume axis which would convert the isotherm into one of the general
shape of those yielded by the experimental work of Andrews.2 In 1875 Maxwell argued,? on the basis of the equivalence
of heat and work, that the correct tie-line to choose would be that which formed with the isotherm two bounded areas
of equal magnitude. It is now known that the equal areas rule is exactly equivalent to choosing the least minimum of an
appropriate thermodynamic potential function. This latter principle we shall refer to as Maxwell’s rule.

In the publications of Thom,** the principle whereby a first-order phase transition (a catastrophe) occurs when the
potentials associated with two stable states (attractors) are equal is referred to as “Maxwell’s convention.” Although
Thom makes it clear (reference 5, p. 56) that the physical validity of the convention is not his concern, he does regard
it as “‘somewhat arbitrary” (reference 4, p. 105). He further remarks that the potential function “might well be replaced

by any other function expressing roughly the stability of the attractor, . . ., and the structure of the catastrophe points

would scarcely be altered” (reference 5, p. 56). It is beyond our competence to know whether, in the biological field, such
modifications of the potential function have any significance, but it is certainly clear, from a study of the work of
Fowler,? that an insufficiently careful choice of potential function can lead to serious errors in thermodynamics. To
avoid confusion with the correctly formulated Maxwell’s rule, we shall refer to the Maxwell convention of Thom by
the name Equal potentials convention. We shall see in the next section that the distinction between the thermodynamically
correct Maxwell’s rule and the, not necessarily correct, Equal potentials convention rests on the choice of an appropriate
and non-arbitrary potential function.

2. Thermodynamic potentials

For a system, considered in the context of catastrophe theory, the space R” of all the variables {X7, X5, ..., X,}, which
can be independently manipulated by the experimenter, is called the control space. The space R™ of the variables
1, Ys, ..., Y, }, which are necessary, together with the control space variables, to specify a state of the system, is called

the state space® For elementary catastrophes there exists a smooth potential function ¢: R”x R*—R such that the

equilibrium states of the system are given by®

3gp
B 2.1
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To a particular point in control space there may correspond a number of equilibrium states of the system. Which of
these states is the stable equilibrium state may depend, as in the case of the Zeeman catastrophe machine,® on the means
by which the state was attained. Part of the purpose of this paper is to discuss stability criteria for phase transitions in
fluid systems.

We consider a fluid system of identical particles and define

Seatl iaitiae :T : absolute temperature

S: entropy

pressure

mechanical variables P
V: volume

: . w: chemical potential per particle
o {N : number of molecules
U: thermodynamic energy.

These variables will be well defined for an equilibrium state of the system and, if the system undergoes an infinitesimal

quasi-static change of equilibrium state
dU=TdS—PdV+udN. % v 2:2)*

The control space for this system will be three dimensional and the variables of the space can be chosen to be either one
of each of the bracketed pairs of variables given above. The remaining variables will then be given as functions with the

* The justification for this and subsequent results, quoted from thermodynamic theory, can be found in almost any text on the subject,
e.g., Landsberg,!? ter Haar and Wergeland.!!
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control space as domain. If we choose control space {S, ¥, N} (a system in thermal, mechanical and chemical isolation)
then we shall have, in this space, surfaces of constant energy of the form

U(S, V,N) = constant. 3 2.3)

From (2.2) it is clear that the normal to such a surface at the point (S, ¥, N) will be in the direction (7, — P, ). The
thermodynamic energy is normally a homogeneous function of (S, ¥, N) and it follows from equation (2.2) and Euler’s
homogeneous function theorem that

U=TS—PV+uN. 24

Alternative choices of control space lead to surfaces .speciﬁed by alternative functions.* We shall consider three.
(i) By defining the Helmholtz free energy

A= Do 2.5)
we can obtain from (2.2), by a Legendre transformation,
dA = —SdT—PdV+ pdN. : 2.6)

The control space is now {7, ¥, N} (a system in mechanical and chemical isolation and in thermal equilibrium with its
environment). From (2.4)
A =—PV+uN. 2.7

The next two cases are symmetric in their use of the mechanical and chemical variables and we shall treat them in
parallel.

(i) By defining the Gibbs free energy (iii) By defining the function (unnamed in the literaturé}
G =A+PV, (2.8a) D = A—puN, (2.8b)

“we obtain from (2.6), by a Legendre transformation, we obtain from (2.6), by a Legendre transformation,
dG = —SdT+VdP+pdN. (2.90) dD = —SdT—PdV— Ndp. (2.9b)
The control space is now {7,P, N } (a system in thermal The control space is now {7, V, u} (a system in thermal
and mechanical equilibrium with its environment and and chemical equilibrium with ‘its environment and in

in chemical isolation). From (2.7) mechanical isolation). From (2.7)

G = uN. (2.10a) D =—PV. (2.100)

Since classical thermodynamics is essentially concerned with equilibrium situations, a certain care is needed in
defining these variables for non-equilibrium situations. Whenever this is possible the second law of thermodynamics
allows the following analysis. Suppose that during some infinitesimal change of state of the system the entropy changes
by dS, then

ds=d,S+4d;S, 2.11)
where d, S satisfies equation (2.2) and 4, S, the contribution to dS due to changes within the system satisfies the equation
d;S>0. ‘ 2:12)

It follows from equations (2.2), (2.11) and (2.12) that
. TdS—dU—PdV+udN=0, (2.13)

where the equality sign corresponds to quasi-static equilibrium changes of state. By applying the Legendre transforma-
tions utilised above we conclude that, if the change of state occurs at a fixed point in the control space:

(i) {T,V,N}, then dA<0,
(ii) {T,P,N}, then dG<O,
(i) {T, V, s}, then dD<O0.

We define non-equilibrium states of the system by introducing variables in addition to those of the control space. These
new variables are the state space variables. For the control spaces in cases (i)—(iii) given above, the equilibrium states
are then given by local minima of the potential functions 4, G and D, respectively. The potential functions corresponding
to alternative choices of control space can be derived by using further Legendre transformations in a way illustrated by
the cases considered here. It is perhaps worth emphasising that, whatever permissible control space is chosen, there
exists an appropriate potential function which can be derived using well established thermodynamic principles.-

One way of obtaining well defined thermodynamic functions for non-equilibrium states is to include one or more of
the fundamental set of six variables defined at the beginning of this section, beyond those necessary to specify a point in
control space. We shall consider, in parallel, two cases corresponding to examples (ii) and (iii) given above.

Let the control space be {T, P, N} and let the system be in Let the control space be {7, ¥, u} and let the system be in
an equilibrium state with respect to the variables 7, V. an equilibrium state with respect to the variables 7, V
and N but not necessarily with respect to the applied and N but not necessarily with respect to the chemical

* On the basis of choice described above there are, of course, eight functions in all. Other functions can be generated by choosing
U, A, G, D, etc., as control space variables.
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pressure P. The Gibbs free energy is given from (2.8a) by
G(T,P,N; V) = A(T,V,N)+PV. (2.14a)

The state space is the one-dimensional space of ¥ and
the equilibrium states are given by

oG 04
P ('a‘v)m” o

From (2.6), this equation defines precisely the equilibrium
value of the pressure at a point in the control space
{T, V,N}. A value of 'the volume is a stable equilibrium
value if

(2.15q)

(32‘4 (2.16a)

— >0.
0 Vz) TN

potential of the particles in the environment. The
potential D is given from (2.85) by
D(T,V,u;'N) = A(T, V,N)—uN. (2.14b)

The state space is the one-dimensional space of N and
the equilibrium states are given by

oD 8A)

ON \oN)ry
From (2.6), this equation defines precisely the equilibrium
value of the chemical potential at a point in the control

space {7, V, N}. A value for the number of particles is a
stable equilibrium value if

(32A). >0
aNz T,V %

=0, (2.15b)

(2.16b)

These are forms of the well known thermodynamic stability conditions.

It is clear from the above analysis that the thermodynamic equilibrium and stability condltlons are strictly applicable
only to states in a neighbourhood of an equilibrium state. They are local conditions. For a discussion of phase
transitions they need to be extended to more general situations, which may be achieved by the following assertion.

The thermodynamic potential function, which is appropriate for the determination of local stability, is also that which deter-
mines the relative stability of all equilibrium states in state space which correspond to the same point in control space.

This assertion may be regarded as an additional axiom of thermodynamics and in that sense “conventional” but it is by
no means arbitrary. It also has a long history of usage dating back to the work of Gibbs.12
Consider again our fluid system from the two parallel points of view given above and suppose that it can exist in vapour

and liquid phases

with potential functions G and G*®, respectively, for
the control space {7, P, N}. If for a particular point in the
control space there exist minima of the potential functions
in each of the phases, with volumes V] and V, for the
vapour and liquid, respectively, then according to our
assertion the stable state is taken to be represented by the
lower minimum. Thus we have the phase transition
condition

G, P;N; 1) =GOT,P,N;Vy), (2.170)
which, from equation (2. 10a) is equivalent to the
condition that the particles in the two phases have
equal chemical potentials.

For a classical equation of state of the form

P=£(T,V,N) (2.180)

an isotherm (at constant N) in the P-V plane will exhibit
the conditions necessary for a phase transition only if it
has more than one solution for ¥V at fixed (7, P, N). The
- simplest way this can occur is by means of a van der
Waals type loop (see Fig. 1). In this case equation (2.184q)
has, for fixed 7' (below the critical value) and over a
certain range of P, three roots for V. We must distinguish
between them according to their values of the potential
function. This is given from equations (2.14a4) and (2.18a)
by

G(T,P,N; V) = PV— f AT, V,N)dV+(T,N), (2.19)

where « is some unknown function of 7 and N. From
equations (2.17a) and (2.194) the Maxwell rule condition
(2.17a) (with GV = G®) now takes the form

PWV,—V,) = f : AT, V,N)av. (2.20a)

36

with potential functions D® and D®, respectively, for
the control space {7, V, u}. If for a particular point in the
control space there exist minima of the potential functions
in each of the phases with numbers of particles N; and N,
for the vapour and liquid, respectively, then according to
our assertion the stable state is taken to be represented
by the lower minimum. Thus we have the phase transition
condition
DT, V,p; N) = DT, V,p; Np),  (2.17B)
which from equation (2.100) is equivalent to the condi-
tion that the two phases are at equal pressures.
For a classical equation of the form
p=g(T,V,N) (2'18b)
an isotherm (at constant V) in the u—N plane will exhibit
the conditions necessary for a phase transition only if it
has more than one solution for N at fixed (7, ¥, n). The
simplest way this can occur is by means of a van der
Waals type loop. In this case equation (2.185) has, for
fixed T (below the critical value) and over a certain range
of p, three roots for N. We must distinguish between
them according to their values of the potential function.
This is given from equations (2.146) and (2.186) by

DT, Vs N) = =N+ f ¢(T, V,NYdN+B(T, V), (2.19)

where 8 is some unknown function of 7 and V. From
equations (2.17b) and (2.19b) the Maxwell rule condluon

"(2.17b) (with DM = D®) now takes the form

(N, — Ny) = f ;V’g(T, ¥, N)dN. (2.205)
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Fig. 1. The van der Waals isotherm for (7/T,) = 0-85. The broken part of the curve corresponds to metastable states and the
dotted part to unstable states if the phase transition is calculated according to Maxwell’s rule (or the equivalent equal areas rule).
The pressure (P/P,) = 0-4 corresponds to the (incorrect) Riemann—Hugoniot catastrophe of Fowler?

Equation (2.20q) is an analytic expression of the usual equal areas rule. Equation (2.205) is also an equal areas rule, but
of a less familiar kind. It can be seen that neither of these is in any way an arbitrary convention, but both are consequences
of well established thermodynamic practice.
As an example of this analysis we shall consider the van der Waals fluid. Here, as in most classical thermodynamic
models, we are given only an equation of state of the form (2.18a):
NkT aN?

P AN VR (2.21a)
where g and b are constants and & is Boltzmann’s constant. It may be shown (reference 11, p. 35) that the heat capacity
of this fluid, at constant volume, is everywhere outside the coexistence region equal to the perfect gas value 3Nk/2 and
in the low density limit the entropy gives asymptotically the Sackur-Tetrode equation. This enables us to evaluate the
functions g, « and B to within an arbitrary constant which fixes the zero of the chemical potential. Neglecting this
constant does not affect our calculations which give for (2.18b)

2mkTm\&(V _2aN vV
and potentials of the form
2
G(T,P,N; V)=PV—NkTIn M) < —b } —ﬂ — NkT (2.22q0)
- h? N vV
and
3 2
D(T,V,u; N) =—uN—NkTIn {(-21’%13—7) (%— b)} —‘?—JI\/L—NkT, (2.22b)

where £ is Planck’s constant and m is the mass per particle.
Let us now consider our two parallel cases from a statistical mechanical point of view where, at equilibrium, the
potentials are given by!3

G(T,P,N) = —kTInA(T,P,N),  (2.23a) D(T,V, ) = —kTInE(T, V, p), (2.23b)

" where A is the constant pressure partition function given where E is the grand canonical partition function given

in terms of the Helmholtz free energy by in terms of the Helmholtz free energy by
1
ML P, N — fexp—l-ﬁ,{A(T, V,N)+PV}dV. (2.24a) ALV =% exp-—— {A(T,V,N)— ,u.N} (2.24b)
N

It can be seen that the potentials of equations (2.14) are obtained from equations (2.24) by neglecting the integral or sum.
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The equilibrium situation is then represented by the maximum value of the integrand in (2.244) and the maximum term
of the summation in (2.245). If we think of equilibrium in statistical mechanics as corresponding to the average behaviour
of an infinite ensemble of identical systems, then equations (2.14) are the potentials of subsets of the ensemble with
particular values of the state space variables. Minimisation of the potentials with respect to the state space variables is
then seen as selecting the subsets of the ensemble with the most probable behaviour.

An example which can be treated from this point of view is that of a simple lattice fluid. Here the volume V' = nv,,
where 7 is the number of sites of the lattice and each site is either vacant or occupied by a particle. The particle inter-
action energy is confined to pairs of particles occupying nearest neighbour sites, where it has the value —w (w>0), and
in the zeroth order approximation! for a lattice of coordination number ¢ the Helmholtz free energy is given by

2
AT D (Z) +KTNIn N+kT (l/ 5 N) In (Z-—N) Lk Tl (2.25)
; Vo v, Vo Vo 2V
The appropriate potential functions are now given by equations (2.14) and minimisation with respect to the state space
variables leads to the equations of state (2.18). < :

Equilibrium P— V isotherms, corresponding to those derived from equation (2.25) together with the equal areas rule,
have been obtained from an exact statistical mechanical model by van Kampen'* and Lebowitz and Penrose.’® This
derivation involves the introduction of a certain type of long range attractive force between pairs of particles. The
isotherms are obtained when a limiting process is carried out in which the attractive force becomes infinitely weak at the
same time as its range becomes of infinite extent. :

The middle branch of the van der Waals loop (dotted in Fig. 1) represents unstable states of the system, as can be
seen from equations (2.15a) and (2.16a). The physical significance of the metastable states, represented by the broken
parts of the outer branches of the loop in Fig. 1, is more controversial. Such metastable states can be regarded as the
super-heated liquid or super-cooled vapour whose existence is observed experimentally.'® However, it is often supposed
that, in the thermodynamic limit, exact statistical mechanical theories will yield only the stable states of the system
(see, for example, reference 13, Appendix 9). Fisher!? has suggested that for short range forces the transition point at
the vapour-liquid boundary should correspond to an essential singularity of the Gibbs free energy. From this general
point of view the continuity of the isotherms into metastable regions found in mean field theories, like that of van der
Waals or the zeroth-order approximation, or in higher closed form approximations applied to lattice gases (see, for
example, Burley'® or Lavis and Bell?), is an artifact due to inexact treatment. However other authors take a different
viewpoint. Gaunt and Baker®® supposed that the metastable states can be obtained by analytic continuation and used
series expansion techniques to locate the spinodal curve separating the metastable region from the unstable region. A
resolution has been attempted by Domb?! in terms of the critical role played by eertain droplet configurations, Numeric-
ally these configurations make only a negligible contribution to the partition function and would therefore be undetected
by the methods of Gaunt and Baker. Another approach, due to Lebowitz,* shows that metastable states can be obtained, .
in an exact theory, provided that a constraint is applied to prevent large density fluctuations. From this point of view
metastable states presumably occur in approximate treatments because these implicitly impose homogeneity in each
phase by using the density as an order variable.

3. Phase changes and catastrophes ;

In section 2 we considered a fluid system from two points of view, with control space {T,P,N} and state space {V}
and with control space {7, ¥, u} and state space {N}. In the first of these cases we can reduce the control space to two
dimensions by fixing the number of particles at some convenient value (e.g., Avogadro’s number, when we have one mole
of fluid). In the second case we can similarly reduce the control space by fixing the volume. We are now, in each case,
* considering a system with control space {X;, X,} and state space { Y}. The set .# of attractors and repellers is the set of

equilibrium states at which the derivative of ¢ with respect to Y is zero.

The main theorem of catastrophe theory tells us? that if we project .# into the two dimensional space {X;, X; >t then
the only singularities associated with this mapping are folds and cusps. Suppose that there is a cusp at the point (X3, Xs0)
with the associated point of .# given by Y,. In the thermodynamic sense this is the critical point of a phase transition and

the assertion of catastrophe theory is that in a neighbourhood of the critical point the phase transition can be
represented by a Riemann—Hugoniot catastrophe. This means that there exists a function x of Y, such that x(Y,)) =0,
with respect to which the potential has, in the neighbourhood of the critical point, the asymptotic expansion

(X, Xo3 X)~ U Xy, Xo) x+ E(X7, X)x2+ 0(Xq, Xp) X+ x(X7, Xp) x4, @3.1)

where ¥(Xyp Xo0) >0, {(Xier Xao) = £(Xye» Xao) = 0 and o is identically zero. There is, of course, a large number of
functions which, given the set .#, can be constructed so that this set represents the vanishing of their first derivatives
with respect to Y. It must however be emphasised that, if the correct phase transition curve is to be obtained using
Maxwell’s rule, then the potential must be constructed according to the principles of thermodynamics as outlined in
section 2. This basic point seems to have been overlooked by Fowler? in his treatment of the van der Waals and
Berthelot equations. In order to clarify this point we shall outline Fowler’s treatment of van der Waals’ equation. For
this equation it is not difficult to show (see, for example, reference 11, p. 4) that the critical point is given by
T, = 8a/(27bk), P, = a/(27b%) and V, = 3Nb. Fowler chooses the variable

x=(VV=1) - (.2)

38 The Institute of Mathematics and its Applications
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and expresses equation (2.21a) in the form

2(4T P 1/8T . P
T, P,

0=§ 3 +§ Tc+}—);—9)x+x3. (3.3

On the basis of this he produces the potential o' given by

2/4T P 1(8T P 1
(¥) FonL s o M |—=+=—-9)x2+= 3.4
o'FN(T, P; x) 3(Tc B 3)x—i—6(Tc +Pc 9)x +4x4, (3.4
for which dp¥)/oV = 0 gives equation (3.3). Itis clear that the potential ¥ is that associated with a Riemann—Hugoniot
catastrophe. It is equally clear, however, that this catastrophe is not that corresponding to the phase transition in the
van der Waals fluid. We now derive a thermodynamically correct form of potential ® as a function of x. Translating
equation (2.224) into a form involving the critical point parameters and the variable x, we obtain

b S I;;J:Vf(T P Vol _ oz, p; x), (3.5)
where
oT.P; 9 = () n (221“__2;)_ 2x{1+ 37 )} (3.6)

The Taylor expansion of this equation about x = 0, to the fourth order, is

240 P ar Iy 24T F 1{8P ST
e o R 1o A L et e s il

The identity between the linear terms in (3.4) and (3.7) is simply a matter of scaling, and the fact that equation (3.7),
like (3.1) and (3.4), has coefficients which vanish up to the cubic term at the critical point is determined by the order
of the phase transition (see, for example, Landau and Lifshitz?, chapter 14). In equations (3.1) and (3.4) the cubic term
is identically zero. That this is not the case for equation (3.7) illustrates an important poeint concerning the relationship
between phase transitions and catastrophe theory. It is of course quite easy to-eliminate this term in (3.7) by replacing
the variable x by the variable x” defined by

(3.8)

g

Foa i o { T Py 8Ps BEI S
¥ =x+2| Pc} { }
as is done by Schulman and Revzen.? It is tempting to suppose that we have, by this means, obtained a potential in the
required form (3.1). This is however incorrect, since the Taylor expansion for the Gibbs free energy about x’ = 0 must
be obtained from the exact expression (3.6) for ® and not from (3.7). If we expand correctly with respect to x’ we shall
find a non-vanishing cubic term.

The absence of a cubic term in the expansion of the thermodynamic potential, with respect to some ordering variable,
is associated with definite symmetry properties of the model, which have been reflected in the choice of expansion variable
(see reference 23, chapter 14). It is presumably a consequence of catastrophe theory that, given a particular system and a
particular two dimensional control space, then a parameter exists in terms of which the expansion of the correct

thermodynamic potential has the Riemann—Hugoniot form. It is, however, by no means easy to determine this parameter .

in particular cases. It is certainly true that neither x nor x’ is that parameter for a van der Waals fluid with control space
{T, P}. On the other hand, for this fluid, with control space {7, u} and state space {N}, we have been able to determine a
parameter in terms of which the correct thermodynamic potential, expanded to the fourth order, has the Riemann—
Hugoniot form. The réles of N and V" are now reversed and the number of particles has critical value N, = V/(3b). The
critical value of the chemical potential is given by

e 2mkTr\?| 7 :
: jpeou {2”(——,,2 ); 3 (3.9)

Choosing the variable
y=(NIN,—1) : (3.10)

and translating equation (2.22b) into a form involving the critical point parameters and the variable y we obtain

: = W(T, u; y), 311
| — RT.N, (T, p y);l e, )
where W "({)
st Zhalle e A _&_i) E}_? -
| ‘F(T,u,y)—(Tc)<1+y)1n(2_y)+y(n){(ch L2l -2 r2n. (3.12)
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The Taylor expansion of this equation about y = 0, to the fourth order, is

o (@A) oo

Tt is also of interest to note the equations corresponding to (3.6) and (3.12) for the lattice gas with Helmholtz free energy

(2.25). These are

Ouo(TP; 9 =3(1

C

e A

"and

Poo (T y) = (%) {A+») (1 +y)+1—pn( —y)}—y(2+y—i—"), (3.15)

(4

respectively, with Taylor expansions

Dy, 6 (T, P; x)~ {; II:+(; )(21n2 1)—1} _g(%_gc)xz
%(%—g)xu{;( )(21n2 1)—1—§(%—£)}x1 (3.16)

T YT
oo (T p; ~2(—"—1) +(—-1) 2+—(—) £ 3.17
La(Lm N~ = 1)y+(7—1) 7+l F )y G.17)

Again we have a situation in which the control space {7, P} with parameter x does not produce a Riemann-Hugoniot
catastrophe, whereas the control space {7, u} with parameter y does. This can be clearly understood in terms of the basic
symmetry of the Ising model from which the simple lattice gas is derived. If we translate the Ising model into a lattice
gas (reference 13, chapter 7) the constant field distribution, which carries the symmetry properties, must be translated
into the grand canonical distribution. If we construct the constant pressure distribution the symmetry is destroyed. '
Let us now return to the problem of determining the first order phase transition away from the critical point. Such
a transition will occur on a line of points in the control space terminating at the critical point and lying in a region for
which the equation of state has three roots. We have shown in section 2 that this phase transition curve can be obtained,
for a fluid system, by applying Maxwell’s rule to the correctly established thermodynamic potential. Since catastrophe
theory is a local theory, valid only in some neighbourhood of the critical point, we can expect, in general, to obtain from
it only the asymptotic properties of the phase transition curve. There is an exception to this when the potential is given by

(X1, Xp; x) = {(X, Xp) x+ (X7, X5 X), (3.18)

where ¢, is an even function of x with second derivative equal to zero and fourth derivative strictly positive at the
critical point. In this case the phase transition curve in the X,—X; plane is given exactly by

{( X1, Xp) = 0. (3.19)

One example of this special case is that of the lattice gas with potential ¥y, ;. given by equation (3.15). Here the phase
transition curve in the u— T plane is

and

B= e (3:20)

Another example would be that for which the potential were given exactly by the Riemann—-Hugoniot potential.
Fowler’s potential (3.4) for the van der Waals fluid is of this form and he derives the phase transition curve in the
P—T plane

—=—-3. 3.21
Unfortunately, since he has used the wrong potential, it is clear that this equation does not correctly represent the phase
transition curve. Even as a local asymptotic form of this curve it is not very satisfactory. Suppose we have, for our
potential function, the asymptotic form (3.1) with o zero at the critical point, but not necessarily identically zero. Then
a short calculation, using Maxwell’s rule, yields the equation

o( X7, Xy) {46(X7, Xp) x(X1, Xp) +0%( Xy, Xp)}~ 8§(X1’ Xz) X(X1, Xp) (3.22)

for the asymptotic form for the phase transition curve. When o is identically zero, as in equation (3.13), we have the
asymptotic equivalent of equa’uon (3. 19) When o is not identically zero we must use the complete form of (3.22). In the
case of equation (3.7) this gives v

4T P BPLST. i BEopr, T
°~<'TTE_3} e e o)
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The curves in the P-T plane representing equations (3.21) and (3.23) agree in gradient but not in curvature at the critical
point. In Figs. 2 and 3 we have represented examples of the behaviours of o™ and ®@, given respectively by equations
(3.4) and (3.6), as functions of (¥/V,). From these the phase transition tie-lines have been obtained as represented on
Fig. 1. That determined from Fowler’s potential ‘¥ is at a considerably lower pressure than the correct value obtained
from @. Since o™ and @ are smooth functions on the real line, without self-intersections, a diffeomorphism must exist
between them which maps one on to the other. This, nevertheless, does not seem to be a sufficient condition to guarantee
that ™ is an adequate function for representing the van der Waals phase transition.

0.1

0305 f Sl 0.65.

-0.05

=0.1

-0.15

-

=032

Fig. 2. Fowler’s Riemann-Hugoniot potential corresponding to the van der Waals equation for (7/T,) = 0-85.

The curves are
parametrised by their values of (P/P,) with (P/P,) = 0-4 corresponding to the catastrophe

-0.05

=015

<02

-0.25

-0.3

Fig. 3. The function @ (which is to within a function of P and T the Gibbs free energy) for the van der Waals equation for (7/7,) = 0-85.

The curves are parametrised by their values of (P/P,) with (P/P;) = 0-504 corresponding to the phase transition calculated according

to Maxwell’s rule
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" Maxwell’s rule he proceeds to a discussion of alternative conventions. He gives two examples. The first he refers to as the
saturation convention whereby “one minimum is preferred as soon as it comes into existence.” For this he gives no
justification and it need not detain us. The second, the so-called delay convention whereby “the system remains in a

is certainly clear that for a damped mechanical model, like the catastrophe machine, not subject to energy fluctuations,
the delay convention is valid. Its validity would, however, seem to be doubtful in the case discussed by Fowler, namely

There is another aspect of Fowler’s paper” which gives rise to objections. Relying on the supposed conventionality of

minimum until it disappears” has been discussed by Thom in relation to models in embryology (reference 5, p. 177) and
by Zeeman in relation to the behaviour of his catastrophe machine® and to models for learning.* We are not in a position
to embark upon a detailed discussion of the validity of this convention for biological and sociological models, and it

that of magnetic hysteresis. Magnetic hysteresis is an irreversible phenomenon arising from frictional effects at domain
boundaries. It is by no means clear that the process, by which the magnetic field does work in overcoming these
frictional effects, corresponds to the system moving along the isotherm of a classical equation of state until it reaches
the spinodal line. As we have tried to indicate at the end of section 2, metastability in thermodynamic systems is a
complicated problem. It may be tempting to suppose that it can be treated by the use of the delay convention but we feel
that it is much more appropriate that it should be investigated by means of detailed statistical mechanical models.

4. Conclusions ?

The purpose of this work has been to make clear the following points.
(i) The criterion for thermodynamic stability is Maxwell’s rule applied to the appropriate thermodynamic potential.
(ii) The choice of the appropriate thermodynamic potential, with respect to a particular control space, is not arbitrary.
It is determined by the second law of thermodynamics, extended where necessary, by long accepted practice, to include
non-neighbouring states.
(jii) Whenever the system is described by a continuous equation of state the Maxwell rule, for a first-order phase
transition, is exactly equivalent to the equal areas construction:
(iv) Determination of the thermodynamic potential from the equation of state must be done with due regard to
thermodynamic laws. -
(v) Whether the potential, for a system with two dimensional control space and one dimensional state space, is J
asymptotically equivalent to the Riemann-Hugoniot potential in a neighbourhood of the critical point depends on the
choice of control space and on the choice of expansion parameter.

These points will perhaps seem obvious to practitioners of classical or statistical thermodynamics. They do, however, -
seem to be somewhat neglected by those engaged in the application of catastrophe theory. '

We have been aided in this work by discussion with Dr. F. Jellett.
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